Chemistry: Light Problems

- Violet: 400-430 nm
- Indigo: 430-450 nm
- Blue: 450-500 nm
- Green: 500-570 nm
- Yellow: 570-590 nm
- Orange: 590-610 nm
- Red: 610-700 nm

\[E = h \nu \]
\[c = \lambda \nu \]

Directions: Solve the following problems. Show proper set-up, work, and units for full credit. Box in your final answer.

1. A wave has a frequency of 22 Hz. Find its wavelength.
 \[\frac{c}{\lambda} = \nu \]
 \[3.00 \times 10^8 \text{ m/s} = \lambda (22 \text{ Hz}) \]
 \[\lambda = 1.4 \times 10^7 \text{ m} \]

2. What is the frequency of a wave if its wavelength is 3.6 \times 10^{-9} \text{ m} and its velocity is 3.0 \times 10^8 \text{ m/s}?
 \[\frac{c}{\lambda} = \nu \]
 \[3.00 \times 10^8 \text{ m/s} = \lambda (\nu) \]
 \[\nu = 8.3 \times 10^{14} \text{ Hz} \]

3. As you move across the continuous spectrum from red to violet, what happens to...
 a. wavelength? it decreases
 b. frequency? it increases

4. A beam of microwaves has a frequency of 1.0 \times 10^9 \text{ Hz}. A radar beam has a frequency of 5 \times 10^{11} \text{ Hz}. Which type of radiation... (you will need to calculate the wavelength and compare to the chart at the top of the page)
 a. has the longer wavelength?
 \[\frac{\text{microwaves}}{3.00 \times 10^8 \text{ m/s}} = \lambda (1.0 \times 10^9 \text{ Hz}) \]
 \[\lambda = 0.30 \text{ m} \]
 b. is nearer to visible light in the electromagnetic spectrum?
 \[\frac{\text{radar}}{3.00 \times 10^8 \text{ m/s}} = \lambda (5 \times 10^{11} \text{ Hz}) \]
 \[\lambda = 0.00006 \text{ m} \]
 c. is closer to X-rays in frequency value?

5. A bright line spectrum contains a line with a wavelength of 518 nm. Determine...
 a. the wavelength, in meters. (Hint: 1 \times 10^9 \text{ nm} = 1 \text{ m})
 \[\frac{518 \text{ nm}}{1 \times 10^9 \text{ nm}} = 5.18 \times 10^{-7} \text{ m} \]
 b. the frequency.
 \[\frac{c}{\lambda} = \nu \]
 \[3.00 \times 10^8 \text{ m/s} = \lambda (5.18 \times 10^{-7} \text{ m}) \]
 \[\nu = 5.79 \times 10^{14} \text{ Hz} \]
 c. the energy.
 \[E = h \nu \]
 \[E = 6.626 \times 10^{-34} \text{ J s} (5.79 \times 10^{14} \text{ Hz}) \]
 \[E = 3.84 \times 10^{-19} \text{ J} \]
 d. the color of the line.
 Green
6. A photon has an energy of 4.00×10^{-19} J. Find...
 a. the frequency of the radiation.

 \[
 E = h\nu \\
 4.00 \times 10^{-19} \text{J} = 6.626 \times 10^{-34} \text{J} \cdot \text{s} (\nu) \\
 \]

 $E = 6.04 \times 10^{14} \text{Hz}$

 b. the wavelength of the radiation.

 \[
 \frac{c}{\lambda} = \nu \\
 3.00 \times 10^{8} \text{m/s} = \lambda (6.04 \times 10^{14} \text{Hz}) \\
 \]

 $\lambda = 4.97 \times 10^{-7} \text{m}$

 c. the region of the electromagnetic spectrum that this radiation represents.

 \[
 4.97 \times 10^{-7} \text{m} \times \frac{1 \times 10^{9} \text{mm}}{1 \text{m}} = 497 \text{nm} \\
 \]

 visible light - blue

7. A photon of light has a wavelength of 3.20×10^{5} m. Find...
 a. the frequency of the radiation.

 \[
 \frac{c}{\lambda} = \nu \\
 3.00 \times 10^{8} \text{m/s} = 3.20 \times 10^{5} \text{m} (\nu) \\
 \]

 $\nu = 9.38 \times 10^{2} \text{Hz}$

 b. the energy of the photon.

 \[
 E = h\nu \\
 E = 6.626 \times 10^{-34} \text{J} \cdot \text{s} (9.38 \text{Hz}) \\
 \]

 $E = 6.22 \times 10^{-21} \text{J}$

 c. the region of the electromagnetic spectrum that this radiation represents.

 Long Radio Waves

8. Determine the frequency of light with a wavelength of 4.257×10^{-7} m.

 \[
 \frac{c}{\lambda} = \nu \\
 3.00 \times 10^{8} \text{m/s} = 4.257 \times 10^{-7} \text{m} (\nu) \\
 \]

 $\nu = 7.05 \times 10^{14} \text{Hz}$